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Trends and advances in optimization:

Theory 4 » Computational methods 4 » Computers

) Solve larger problems faster -- New algorithm paradigms
) New model classes
lIl) Software for Conic Linear Optimization

Industry applications

)  Optimization Ubiquitous
1) General and sector specific modeling/optimization tools
III) Not only industry, everywhere in life

Conclusions
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|) Foundation: Linear Optimization (LO)

Duality and optimality are key tools in developing algorithms

Standard form for Linear Optimization
(LO) Primal problem: T
min  ¢'X max D'y
subjectto  AX=D subjectto  A'y<c
x>0
where A: mxn has full row rank. Aly+s=c, s>0

Weak duality: c'x=(A"y+s) x=y'b+s'x>b'y
Optimality conditions:
c'x=b"y or x's=0 o xs=0& x5 =0 Vi
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Foundations of Algorithms for LO and QO

Primal feasibility, Dual feasibility, Complementarity

(Criss-Cross Method

x;8; = 0 Vi

|

‘ Simplex I ‘ Simplex I

Interior Point Methods

Algorithms keep a part of the optimality conditions

SCOPI while working towards satisfying the others
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Simplex Algorithms — Dual Simplex

Theory Computational methods Computers
Dual feasible basis tableau

5 ©

Objective is monotone

choose a primal infeasible| T Optimal Basis Solution
0 . . . © SHEX Issue: Degeneracy

i Finite variants

& -
~~_Stop (1) optima Exponential in the
q
5 .

- WOrst case — see
| - — Klee-Minty Cube
ocate negatives in row o . _
verform a ratio test 4 SRS Efficient in practice
Stop (II) primal inconsistent N Averag e” and
“expected” # of
pivots is linear in n
Activ research area




Interior Point Methods

Analytic center, central path and complexity

» The central path start from the analytic center

» IPMs follow the central path
» converge to an optimal solution.

» IPMs are polynomial time algorithms for linear optimization

O(nL) : number of iterations
d : number of inequalities
L : input-data bit-length

analytic
center

W

central
«— path

optimal

SCOPI olutjon
Alumni

L. central path parameter

max b'y+ IUZ In(c- ATy),

Aly<c



Interior Point Methods

Polynomial Complexity depending on n and L
lteration Complexity Bound Sharp
Degeneracy is not an issue
Redundancy (large n) may cause serious problems
Large L may cause extremely curly long path
The central path is analytical — not geometrical
The central path converges to the analytical center
of the optimal face.
IPMs produce Exact Strictly complementary solution
Polynomial # of iterations followed by a
Strongly polynomial rounding procedure
From the exact strictly complementary solution pair an
Optimal Basis can be obtained by a
Strongly Polynomial Basis Identification Procedure
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Central Path — with redundant representation

Alumni Il formulated models are difficult to solve!

The central path is analytical, not geometrical!

D3
D[

SCOPI Be Careful with modeling!




How curly the central path can be?

Note: The central path depends on the representation of the feasible set;
It is an analytic, not a geometric object.

Q: Can the central path be bent along the edge-path followed
by the simplex method on the Klee-Minty cube?
(can the central path visit an arbitrary small neighborhood of all 2" vertices?)

Starting
point

Yes! - if N

we carefully add
an exponential number
of redundant constrains

IPMs iteration complexity bound is tight! °

SCOPI
Alumni 0

'e=02
5=0.1



Solvers improve, enhanced by computer power

In a decade 1000 times better both computers and LO solvers

From: Bixby: Solving Real-World Linear Programs a decade and More of Progress

Instance CPLEX 1.0 CPLEX 5.0 CPLEX 7.1 CPLEXT.1

Dual Primal Dual
pds100 — 50413.1 24148 256.3
pds90 — 59981.0 2452.2 320.3
pds&0 — 420554 2201.5 304.4
pds70 335292.1 211204 1504.1 197.8
pds60 205798.3 T442.6 852.4 160.5
pdsd0 122195.9 8509.9 493.2 114.6
pds40 58920.3 2816.8 188.3 79.3
pds30 15891.9 1154.9 T74.8 39.1
pds20 5168.8 232.6 27.9 20.9
pdsl0 208.9 13.0 3.7 2.6
pds06 26.4 2.4 1.4 0.9
pds02 0.4 0.1 0.1 0.1

1979 DKV Szazhalombatta
SCOPI Size: 800x1100, IBM 360 with 128KM memory, Punch card MPS file
Alumni Solution time: about 3 hours by primal simplex



What Is best? Simplex or Interior Point Methods

(Very) Large scale, degenerate: IPMs win, or the only option
Medium scale: depending on Structure
Re-optimization, warm start: Simplex wins

Table 11: Solution times—Best of three

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car 1595.0 203.0 117.1 6G7.3 barrier
continent 364.7 110.5 99.5 46.7 primal
energyl 12174 46.9 31.5 224 barrier
energy2 10130.1 171.4 1.7 32.4 barrier
energy3 21797.1 152.6 113.4 82.2 barrier
fuel 5619.5 999.1 340.5 124.7 barrier
initial 3832.2 102.2 51.3 15.5 dual
schedule 152404.0 252.3 132.0 17.9 barrier
SCOPI
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II) New Model Classes

Conic, integer, black-box ....

Traditional model classes:
« LO, QO, MILO, Networks, ...
« Convex, Nonlinear

Recent hot areas:
e Conic Linear Optimization
 Second Order Cone Optimization (SOCO)
o Semidefinite Optimization (SDO)
« MISOCO and MISDO
 Mixed Integer Nonlinear Optimization
« Black-Box or Derivative Free Optimization (DFO)
« Simulation (based) optimization
 PDE based optimization
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Conic Linear Optimization

Constraints are given as linear functions and convex sets

Primal-dual pair of CLO problems is given as

(P) min 'z (D) max bly

gt Awe—b EC st. c— ATy ec3

E =il y = e
where b,y € IR™, ¢,z € IR", A : m X n matrix, C1,C, are convex
cones and Cf = {s € R" : zl's > 0, Yz € C;} are the dual cones
arg =1,2,

These are solvable efficiently (in polynomial time) by using
Interior Point Methods. LO is based on polyhedral cones.
Are all convex cones good?7?77
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Second Order Cone Optimization (SOCO)

Ice cream / Lorenz / second Order Cone

The second order cone in IR" is defined as

n—1
E I,T-a? < Tn
=1

The name “ice cream cone” is coming from
the 3-dimensional shape of the cone.

The second order cone is self-dual: (&85)* = S%.

Optimization problems where the cones C1 and
C- are polyhedral and second order cones are

second order cone optimization(SOCQ) prob-
lems.

Significance

' i
MNorm minimization, robust optimization. The ice-cream ome |




Semidefinite Optimization

Matrix variables! -- What is the inner product?

The semidefinite cone in IR"™" is defined as
Si={X e R™: X =X" 2" X2 > 0Vz € IR*}

j.e. the matrices X are symmetric and positive
semidefinite, denoted as X = 0. The semidefi-
nite cone is self-dual: (&™) = &".

Optimization problems where the cones (;

and C» are either polvhedral, second order or

semidefinite cones are called semidefinite opti-
mization (SDQO) problems.

3 random 4D) erossesections of 8
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Semidefinite Optimization - formulation

Let A;, :=1,--- ,n and C,X be n xn symmetric matrices, b,y €
IR™ and let TR(-) denote the trace of a matrix.

The primal-dual SDO problem is defined as

(SP) min  Tr(CX) (SD) max b1y

m

st Tr(&X) - >0, % St G-=) Ay =0
j=1

X =0 7 =1,

Robust optimization, trust design
Linear matrix inequalities
Convex relaxation of nonconvex/integer problems
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l1l) Software for CLO problems = Use IPMSs!

Software tools directly usable or via modeling systems

Classic Linear Optimization

Large scale LO problems are solved efficiently.

High performance packages, like (CPLEX, GuRoBI, XPRESS-MP, MOSEK, SAS,....)
offer simplex and IPM solvers as well. Problems solved with 108 variables.
SOCO and SDO

Polynomial solvability established.

Traditional software is unable to handle conic constraints.

High performance packages, like (CPLEX, GuRoBi, XPRESS-MP, MOSEK)
Open Source Software: SeDuMi, SDPpack, SDPA, SDPT3, CSDP, SDPHA, etc
SOCO: Problems solved with 10° variables.

SDO: solved with 104 dimensional matrices.

IPMs for General Nonlinear Problems

Polynomial solvability established for convex problems.

Implementations for non-convex problems as well.

Specialized software Is developed. (MOSEK, LOQO, IPOPT, KNITRO, etc.)
Problems solved with 104 dimensional matrices.

SCOPI
Alumni




Mixed Integer Second Order Cone Optimization

Solve relaxation and derive Disjunctive Conic Cuts

MISOCO

CTI

min
- Ax = b
xcK

xcZ9

where,
e AcR™" ccR" be R™
e K=L"g.. pL"
o L" = {x|x1 > ||x2:n,]|}

@ Rows of A are linearly independent

n—d
w T =

SCOPI
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Sample MISOCO

min:  3x3
st Gy

+2x7 +2x3
+X2 +X3
(xl 1 X2 X3, Kﬂ,)
X4

Solve continuous relaxation.
The optimal solution is

= (1.36,—0.91, -0.91, 0.45),

EDCD

and the optimal value is zero.




The feasible set of the sample problem

How to cut?

Reformulation of the relaxed problem

min: %{1{]+5x3—|—5x3—|—2x4]
1
X2

8 gl
10
s.t.: [xz X3 x.;] [—% Bl xg\‘ —10 <0
L
10

10 10

xg €L




Disjunctive Conic Cut for SOCO exist & computable
The disjunction x4 < —1 \/ x4 > 0 is violated by x_

nE
&;' Integer optimal solution
Q

R LES

: : Frevious
Hﬂiﬂlﬂdﬂﬂhmﬂl Slipeye s solution cut

‘Digjunctive
- Conig Cut

\suh.lhnn

(A) Disjunction (B) Disjunctive conic cut
An integer optimal solution is obtained after adding one cut:
- ael = Xo0o = (1.32, —0.93, —0.93, 0.00, 10.06, —10.06, 0.00),

misOCo
with an optimal objective value: z = e ==

11115-13{]1) 5
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Trends and advances in optimization:
Theory <= Computational methods <mmmmmm) Computers

1) Solve larger problems faster -- New algorithm paradigms
I) New model classes
lIl) Software for Conic Linear Optimization Problems

Industry applications

) General and sector specific modeling/optimization tools
II) Optimization is Ubiquitous in Industry
IIl) Not only industry, everywhere in life

Conclusions
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Modeling systems structure

User does not have to work directly with solver

Single model ‘ Access to multiple solver engines
Nonlinear models mmmmm) Automatic/Algorithmic differentiation

first and second order derivatives

Representation of Conic constraints

AN
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Fragniere, Gondzio (1998)




General and sector specific modeling/optimization tools

Modeling systems minimize the burden of forming and maintaining models

Note: There were no such tools in the 1960’s and 70’s

General purpose modeling systems

« GAMS

« AMPL

o« AIMMS

« MPL, OMP

« AML, AMPL

« NEOS-Kestrel+AMLL

o **XML, GLPK, COIN-OR

» Solver vendor systems, such as
MOSUL, FICO, NUMERICA, LGO

 LINDO, EXCEL

Sector specific modeling systems

« PIMS (Chemical & process industry)
« gPROMS, ASCEND (Chemical)

« CATIA (Design optimization)
 pPYyACDT (Airplane design)

 Genesis (design optimization)
 YALMIP (control)

* GIS (Geographical Information System)
o OptiRisk (Finance)

* SAS Model Analysis)
* CVX | « ANALYZE
« MATLAB, OCTAVE, MAPLE, Matematica .
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II) Optimization is Ubiquitous in Industry

Optimization everywhere ....

Service industries: Engineering systems,

« Value (Supply) chain, ... Engineering design:

* Electricity networks and markets

« Electronic marketing: Game
theoretical and equilibrium models

e Data mining — machine learning

e Transportation, routing and
network design

* Financial optimization, asset
management, pricing

e Control systems

* Truss topology design, bridges,
airplane and wing design

e Product and parts design

« Communication systems design

e Antennae design

* Nuclear reactor reloading

e Revenue management (éptlmlzalh.tflon .. :
.« etc.etc * e, etc.....etc...
SCOPI
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lI1) Not only In industry, everywhere in life

Healthcare e Sciences
* Operating room scheduling « Applied Math.
* Nurse scheduling e Optimal Control
« Facility Design e Genetics
« Organ transplant assignment e Chemistry (Chrystallogy)
In your devices - GPS e Material Science
e Location  Medical Sciences
* Routing  Artificial joints and artifacts
» Cell phone tracking e Radiation therapy treatment
Government optimization
» School bus routing  MRIimaging
e Inmate assignmentin prisons ¢ Humanities
« Homeland security e Social networks
........ etc.....etc ¢ .......etc.....etc
SCOPI
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Conclusions

Optimization explosively grows both inside and outside of the community

 Optimization theory made epoch making advances since
1984

e Computing technology/capacity has grown 10° fold

 Rich collection of modeling systems facilitates the use of
optimization technology

 Novel model classes are solvable by commercial software

e Optimization is everywhere

 Even in the era of “Big Data”, data availability, data
correctness is a challenge

Necessity: Due to competition, financial pressure, sustainability
Possible: Due to theoretical, algorithmic, computing advances

and growing number of capable people

SCOPI
Alumni



SCOPI

Alumni

THANK YOU
FOR YOUR ATTENTION

www.lehigh.ed~/~tat208

Tamas Terlaky ‘ N
- L " A
Lo 1]
| B A

YL Y Y Y S

: A
- .——-"“ - L— . =
' T =

g L

UNIVERSITY OF PANNONIA > Faculty of Information Technology




	Trends and advances in optimization:
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

